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The reaction of a titanium(II) complex (nz-propene)Ti(O—i-Pr)z, generated in situ from Ti(O-i-Pr)4 and
2 equiv of i-PrMgCl, with optically active secondary propargyl phosphate and tertiary propargyl carbonate
proceeds with more than 97% chiral transfer, thus provndmg an efficient and practical method for synthesizing
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Recently, we have revealed that the titanium(II) complex (nz-propene)Ti(O-i-Pr)z (1),
generated in situ by the reaction of Ti(O-i-Pr)4 with 2 equiv of i-PrMgX (X = Cl or Br),!
reacts with propargyl alcohol derivatives via an oxidative addition pathway to give
allenyltitanium complexes in excellent yields (eq 1).2 With these results in hand, we
anticipated that optically active allenyltitaniums having axial chirality might be obtained by
starting with optically active propargyl alcohol derivatives and, thus, a new efficient
asymmetric synthetic method might be developed.3 We also expected that the stereochemical

outcome of the reactions would provide valuable information on the mechanism of the
reaction of eq 1
Ti(O-~Pr)2 R3 R3 R2
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X = OCO,Et, OP(O)(OEt),

Optically active propargyl carbonates or phosphates 2-5, readily prepared according
to the reported procedure using the Katsuki and Sharplcss asymmetric epoxi d tion as the key
reaction,4 were reacted with 1 and subsequently with benzaldehyde to afford the
corresponding homopropargylic alcohols 6 as a mixture of two diastereomers. The absolute
configuration of 6 was determined by derivatization to the known compoundd while its
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4Reaction conditions: substrate (0.5 mmol), Ti(O-FPr)4 (0.75 mmol), FPrMgCl (1.5 mmol) and
ether (5 mL) at -50 ~ -40 °C for 2 h under an Ar atmosphere and then benzaldehyde (0.4
mmol) at -78 °C. ®See note 4. °Total yields of both diastereomers based on benzaldehyde
and diastereoselectivities (erythro : tnreo) 2 are as foiiows; 87% (62 38) forentry 1, 98% (54

: 46) for entry 2, 86% (55 : 45) for entry 3, 72% (55 : 45) for entry 4. 9For determination of

configurations, see note 5. fE.e. is based on that of 6. The calculated values expected by
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simple extrapolation if the substrate is of 100% ee are shown in parenthesis. ’Determmed by
GC analysis using a chiral capillary column (Chirasil-DEX, Chrompack, 0.256 mm x 25 m) after
separation of diastereomers. 9The same e.e. was obtained when a solution of the
allenyltitanium prepared at -50 ~ -40 °C for 2 h was warmed to 20 °C over 0.5 h and stirred for

o O

2 h at this temperature, and then benzaidehyde was added at -78 °C. MTwo diastereomers

were inseparable. E.e. value was determined after derivatization, see note 5
enantiomeric excess (e.e.) was determined by GLC analysis using a chiral column. The
results are summarized in Table 1. It can be seen that the absolute configuration and
enantiomeric excess (e.e.) of the resulting 6 are highly dependent on whether the propargyl
compound is secondary or tertiary and also on the leaving group X. Thus, with respect to
1°* re

the configuration, the carbonates 2 and 4 furnished the corresponding 6 where the addition
reaction proceeded with retention while phosphates 3 and 5 afforded the inversion products.
Since the reaction of allenylititaniums with aldehydes is well-established to proceed at the y-
allenylic carbon via a chelate-type transition state, i.e., with allenyl inversion,® the major



configuration of the allenyltitaniums generated by these reactions can be assigned as 7-10,
respectively, as depicted in Table 1. With respect to the e.e. of the allenyltitanium, and thus
eventually that of 6, it was excellent for secondary phosphate 3 and tertiary carbonate 4;
meanwhile, it was moderate for secondary carbonate 2 and low for tertiary phosphate 5.
In conclusion, the reaction with optically active secondary propargyl phosphate and tertiary
propargylic carbonate proceeds with more than 97% chiral transfer, thus providing an
efficient and practical method for synthesizing di- and tri-substituted allenyltitaniums with
high ontlcal purity. We also confirmed that allenyltitaniums thus obtained are stable to
racemization at least up to room temperature as reported by Hoffman and Honne7 (see note g
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titanium-alkyne intermedia d -elimination through an anti-
coplanar transition state, thus providing 8 with excellent e.e. (path a). However, the tertiary
phosphate 5 proceeds mainly via an Ei-elimination pathway (patn b), rather than the
concerted one due to the steric congestion, providing 10 with low e.e.? Since carbonate is a
weaker leaving group than phosphate, the B-elimination of tertiary carbonate 4 proceeds via
a syn-elimination pathway almost exclusively to afford 9 where intramolecular coordination
acts as the driving force (path c);10 however, for the secondary carbonate 2, an anti-
elimination pathway also might be involved (path c and partly via path a).
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Scheme 1. Elimination Pathway of Alkyne-titanium Intermediates to Allenyltitaniums

In summary, an efficient and practical method for synthesizing optically active
allenyltitaniums with excellent optical purity has been developed. We believe that this
finding opens up a new efficient entry to optically active compounds including
homopropargyl alcohols as described here; 11 further application of the optically active
allenyltitaniums to asymmetric synthesis will be reported in the following paper.
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